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Abstract—In the two-frame sensor calibration problem, the ob-
jective is to find rigid-body homogeneous transformation matrices
X,Y that best fit a set of equalities of the form AiX = Y Bi,
i = 1, . . . , N , where the {(Ai, Bi)} are pairs of homogeneous
transformations obtained from sensor measurements. The mea-
surements are often subject to varying levels of noise, and the
resulting optimization can have numerous local minima that
exhibit high sensitivity in the choice of optimization parameters.
As a first contribution, we present a fast and numerically robust
local optimization algorithm for the two-frame sensor calibra-
tion objective function. Using coordinate-invariant differential
geometric methods that take into account the matrix Lie group
structure of the rigid-body transformations, our local descent
method makes use of analytic gradients and Hessians, and a
strictly descending fast step-size estimate to achieve significant
performance improvements. As a second contribution, we present
a two-phase stochastic geometric optimization algorithm for
finding a stochastic global minimizer based on our earlier
local optimizer. Numerical studies demonstrate the considerably
enhanced robustness and efficiency of our algorithm over existing
unit quaternion-based methods.

Index Terms—Robot sensor calibration, hand-eye calibration,
robot-world calibration, geometric optimization, stochastic global
optimization.

I. INTRODUCTION

In this paper we address the following version of the
two-frame sensor calibration problem: given pairs of ho-
mogeneous rigid-body transformation matrices {(Ai, Bi)},
i = 1, . . . , N , where each Ai and Bi is a 4 × 4 homo-
geneous rigid-body transformation matrix belonging to the
Special Euclidean group SE(3) of rigid-body motions, find
X,Y ∈ SE(3) that is a best fit to the N matrix equalities
AiX = Y Bi, i = 1, . . . , N . In its most common form, this
problem is framed as a least-squares optimization problem
over X,Y ∈ SE(3), in which the objective function is given
by

min
X,Y ∈SE(3)

∑
i

‖AiX − Y Bi‖2, (1)

Manuscript received February 20, 2015; revised September 2, 2015; ac-
cepted October 15, 2015.

Copyright c©2015 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org.

This research was supported in part by the Defense Acquisition Program
Administration BMRR Center, SNU-IAMD, BK21+, MI Technology Innova-
tion Program 10048320 and KIST institutional project.

J. Ha is with the Department of Cardiovascular Surgery, Boston Childrens
Hospital, Harvard Medical School, Boston, Massachusetts, USA (e-mail:
hjhdog1@gmail.com).

D. Kang is with the Imaging Media Center, Korea Institute of Science and
Technology (KIST), Seoul, Korea (e-mail: kimbab.moowoo@gmail.com).

F.C. Park is with the Department of Mechanical and Aerospace Engineering,
Seoul National University, Seoul, Korea (e-mail: fcp@snu.ac.kr).

Ai Bi
X

X

A X = XBi i

(a) One-frame problem

Ai Bi

X

Y

A X = YBi i

(b) Two-frame problem

Fig. 1. Sensor calibration problems involving (a) one frame and (b) two
frames.
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camera and an IMU.
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(b) UAV equipped with reflective IR
markers and a built-in camera.

Fig. 2. Examples of the two-frame calibration problem

where ‖ · ‖ denotes the Frobenius matrix norm, i.e., ‖A‖ =√
tr(AAT ) for a matrix A.
Figure 1 illustrates the general context in which this prob-

lem arises. Given two rigid bodies, each with two reference
frames attached at distinct locations, the relative displacements
between each frame pair are respectively denoted X and Y .
Here X and Y are unknown; to determine them, various
sensors are used to measure the displacements Ai, Bi ∈ SE(3)
of the frames at various configurations of the two rigid
bodies. In the absence of measurement noise, the loop closure
equation AiX = Y Bi must be satisfied for all measurements
i = 1, . . . , N . If the two rigid bodies (and the locations of the
attached reference frames) are identical, then X = Y , and the
loop closure equation simplifies to AiX = XBi; this is the
one-frame sensor calibration problem.

The most well-known example of two-frame sensor cali-
bration is the simultaneous hand-eye/robot-world calibration
problem [1]. Hand-eye calibration alone is a one-frame cali-
bration problem, as is the problem of robot-world calibration.
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There is extensive literature on solution methods for these
two classical problems, which we describe in detail below.
What is worth emphasizing is that with the recent proliferation
of devices that integrate multiple sensors of different types,
the two-frame calibration problem is being encountered in a
variety of different contexts beyond the traditional industrial
settings. For example, relative rotations between cameras and
inertial measurement units (IMUs) on a mobile device along
with their corresponding reference world frames must satisfy
equations of the form AiX = Y Bi ∈ SO(3) as illustrated in
Figure 2(a), where SO(3) denotes the rotation group. Another
application is aerial vehicle tracking (Figure 2(b)), in which
an aerial vehicle equipped with an onboard camera identifies
fixed markers in the environment while simultaneously being
tracked by a ground-based camera.

The objective function (1) is in general nonconvex, and
possesses local minima whose number and properties are
strongly influenced by the level of noise in the measurements
{(Ai, Bi)}. Usually this has not been a major concern for
existing applications in hand-eye and robot-world calibration,
where the measurement noise is relatively small and good
initial guesses are available. Some of the more recent applica-
tions, however, rely on low-cost and noisy sensors that operate
in highly unstructured and dynamic environments [2],[3]. In
such cases it can be considerably more beneficial to search
further for a “best” local minimizer rather than settling for the
first local minimizer encountered, which is dependent on the
choice of initial guess.

As stated earlier, there exists extensive literature on solution
methods for the hand-eye and robot-world calibration problem.
In [1] and [4], unit quaternion representations for rotations
are used to develop linear least squares and iterative nonlinear
methods for finding a local minimizer; in [5] dual quaternion
representations for homogeneous transformations are used to
find the rotation and translation components simultaneously,
rather than in a decoupled way as in the previous two
methods. All of these methods derive in part from earlier
work on the hand-eye calibration problem, where various
linear least-squares and nonlinear iterative methods for finding
local minimizers have also been developed in [5]-[10]. More
recently, in [11] a method for finding the globally optimal
solution to the one-frame hand-eye calibration problem has
been developed, in which the main result is a branch-and-
bound search algorithm that ensures convergence to the global
optimizer in the limit. Another class of methods includes
extrema-seeking algorithms from the uncertain dynamical sys-
tems optimal control literature, in which Newton-type iterative
algorithms are developed for determining extrema when the
objective function is not available in analytic form [12]. These
algorithms are formulated in a vector space setting, primarily
for optimal feedback controller design applications.

In this paper we present a stochastic geometric optimization
algorithm for finding a globally optimal solution to the two-
frame calibration problem. The specific contributions are as
follows:
• We first develop a fast and numerically robust local

optimization algorithm that exploits the matrix Lie group
structure of SE(3). Our optimization algorithm evolves

directly on the search space SE(3)×SE(3), and does not
require local coordinates (e.g., Euler angles for rotations);
solution constraints are exactly satisfied at each iteration,
and the performance of the algorithm is invariant with
respect to the choice of inertial reference frame.
Whereas computational efficiency was not an issue in
previous works on hand-eye and robot-world calibration,
since calibration was performed infrequently and also
offline, in the current work the local optimization algo-
rithm is repeatedly called as part of a stochastic global
optimization algorithm, making computational efficiency
of paramount importance. Our performance improve-
ments are achieved in part by the availability of exact
analytic gradients and Hessians of the objective function.
As is well-known, the speed and accuracy of nonlinear
optimization algorithms are greatly enhanced by the avail-
ability of analytic gradients (and for Newton’s method,
Hessians)—finite difference approximations of gradients
(which is what general optimization algorithms evaluate
when analytic gradients are not provided) can lead to
numerical error accumulations that result in instability
and poor convergence.
We derive two specific local search methods, steepest
descent and Newton’s method. For iterative descent al-
gorithms, as a matter of practice it is usually far more
beneficial to devote greater computational resources to
finding a better search direction rather than in determining
the optimal stepsize. Toward this end, we also derive
an analytic formula for rapidly computing a strictly
descending stepsize estimate. Also as a by-product of our
analysis, we characterize in a rigorous way the existence
and uniqueness of solutions to the ideal case (i.e., no
noise in the measurements).

• We develop a two-phase stochastic global optimization
algorithm, consisting of a global and local search phase,
that extends the method of [13], [14] to the matrix Lie
group SE(3)×SE(3) in a geometric way (i.e., invariant
with respect to choice of local coordinates, and also to left
and right translations). The local search phase relies upon
the local algorithm developed earlier. In the stochastic
global search phase, we reduce the original unbounded
search space SE(3) × SE(3) to the compact space
SO(3) × SO(3), and generate random samples on this
space in a coordinate-invariant way. An optimal Bayesian
stopping criterion is used to terminate the algorithm, with
probabilistic confidence levels obtained for the resulting
solution to be a global optimizer. Through both numerical
and actual hardware experiments, we demonstrate the
advantages of our global optimization algorithm over
existing local quaternion-based approaches.

The paper is organized as follows. After formulating the
problem and characterizing the existence and uniqueness of
solutions in Section II, we present the local least-squares
iterative algorithm in Section III. A two-phase stochastic
global optimization algorithm is described in Section IV.
Experimental results involving numerical case studies are
presented in Section V.
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II. PROBLEM FORMULATION AND EXISTENCE OF
SOLUTIONS

A. Mathematical Preliminaries

We first recall some facts and formulae involving the
rotation group SO(3) and the special Euclidean group SE(3).
Elements of SO(3) are given by the 3 × 3 real matrices R
satisfying RTR = I and detR = 1. The group SE(3) is
defined to be

SE(3) =

{[
R p
0 1

]∣∣∣∣ R ∈ SO(3), p ∈ R3

}
.

SO(3) is a matrix Lie group, and its associated Lie algebra,
denoted so(3), is given by the set of 3×3 real skew-symmetric
matrices with the matrix commutator as Lie bracket. We adopt
the following notation: given r ∈ R3, its 3×3 skew-symmetric
representation is denoted [r], where

[r] =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

 .
The matrix exponential map exp : so(3) → SO(3) provides
a useful local coordinate parametrization for SO(3). If r is
expressed as r = ωθ, where θ = ‖r‖ and ω = r/‖r‖ is a unit
vector, then the exponential formula is given by

e[ω]θ = I + sin θ [ω] + (1− cos θ) [ω]2.

The inverse of the exponential, or logarithm, is also defined
in closed-form as follows: for any R ∈ SO(3) such that
Tr(R) 6= −1,

logR =
θ

2 sin θ
(R−RT ),

where θ satisfies 1 + 2 cos θ = Tr(R). Restricting θ to the
range [0, π] defines a unique logarithm for all R ∈ SO(3)
that satisfy Tr(R) 6= −1. In the event that Tr(R) = −1,
the logarithm [ω] = logR has two antipodal solutions ±ω
which are determined from the relation R = I+(2/π2)[ω]2. A
straightforward calculation also establishes that in the general
case, ‖ logR‖ = θ, where ‖ · ‖ denotes the Frobenius norm.

B. Existence and Uniqueness of Solutions to AX = Y B

The equation AX = Y B on SE(3) can be expressed as
the pair of equations

RARX = RYRB

RApX + pA = RY pB + pY ,

where RA, RB ∈ SO(3) and pA, pB ∈ R3 are assumed to
be known, and RX , RY ∈ SO(3) and pX , pY ∈ R3 are
unknown. In [1], it is shown that any solution to the above
equations must satisfy a corresponding set of linear equations,
but the existence and uniqueness of solutions is not precisely
characterized. In this section, we make mathematically precise
statements about the existence and uniqueness of solutions
(X,Y ) to AX = Y B; detailed proofs of the ensuing propo-
sitions are provided in Appendix A.

1) Existence and Uniqueness of Solutions to RARX =
RYRB on SO(3): Given RA, RB ∈ SO(3), we now consider
the existence and uniqueness of solutions to the equation
RARX = RYRB , where RX , RY ∈ SO(3) are unknown.

Proposition 1. Given two rotation matrix pairs
{(RA1

, RB1
), (RA2

, RB2
)}, consider the pair of equations

RA1RX = RYRB1 , RA2RX = RYRB2 , (2)

where RX , RY ∈ SO(3) are unknown. Define α, β ∈ R3 as
follows:

[α] = log(RA1R
T
A2

)

[β] = log(RTB2
RB1).

If ‖α‖ = ‖β‖, then (2) has a one-parameter family of solutions
(RX , RY )t given by

RX = RTA2
e[α]tΘp = RTA2

Θpe
[β]t (3)

RY = e[α]tΘpR
T
B2

= Θpe
[β]tRTB2

, (4)

where t ∈ [0, 2π], and Θp ∈ SO(3) is any particular solution
to Θβ = α.

Proposition 2. Given the three rotation pairs (RAi
, RBi

), i =
1, 2, 3, define

[αjk] = log(RAjR
T
Ak

)

[βjk] = log(RTBk
RBj

),

and the 3× 3 matrices

Φ =
[
α21 α31 α21 × α31

]
Ψ =

[
β21 β31 β21 × β31

]
.

There exists a unique solution pair (RX , RY ) to the set of
equations

RAi
RX = RYRBi

, i = 1, 2, 3,

given by

RX = RTA1
ΦΨ−1, RY = ΦΨ−1RB1

, (5)

if and only if both matrices Φ and Ψ are nonsingular and
ΦTΦ = ΨTΨ.

2) Existence and Uniqueness of Solutions (X,Y ) to AX =
Y B on SE(3):

Proposition 3. Given two rigid-body transformation matrix
pairs {(A1, B1), (A2, B2)}, consider the pair of equations

A1X = Y B1, A2X = Y B2, (6)

where X,Y ∈ SE(3) are unknown. Define α, β ∈ R3 and
A ∈ R6×6 as follows:

[α] = log(RA1
RTA2

)

[β] = log(RTB2
RB1

).

A =

[
RA1

−I
RA2

−I

]
If ‖α‖ = ‖β‖, then (6) has a (7−rank(A))-parameter family
of solutions (X,Y ).
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Proposition 4. Given the three rigid-body motion pairs
(Ai, Bi), i = 1, 2, 3, and corresponding rotation pairs
(RAi , RBi) and translation pairs (pAi , pBi), define the same
Φ and Ψ as in Proposition 2 and

A =

 RA1
−I

RA2
−I

RA3 −I

 ∈ R9×6

η =

 ΦΨ−1RB1
pB1
− pA1

ΦΨ−1RB2
pB2
− pA2

ΦΨ−1RB3
pB3
− pA3

 ∈ R9.

Then there exists a unique solution of (X,Y ) if and only if both
Φ and Ψ are nonsingular with ΦTΦ = ΨTΨ, rank(A) = 6,
and η is linearly dependent on the column vectors of A.

Propositions 1 and 2 describe the existence and uniqueness
of solutions when noise-free measurements on the rotation
group SO(3) are available. Propositions 3 and 4 are more
general versions of the existence and uniqueness conditions
for the solution on the Euclidean group SE(3) under the
assumption of noise-free measurements.

III. LOCAL LEAST SQUARES MINIMIZATION

A. Least Squares Objective Function

In practice there will not exist an exact solution to AiX =
Y Bi since the measurements Ai and Bi are corrupted by
sensor noise. In this section we consider the minimization of
the following least squares criterion:

1

2

N∑
i=1

‖AiX − Y Bi‖2

where several choices of ‖ � ‖ are available. Here, we define
‖ � ‖2 as ‖P − Q‖2 = ‖RP − RQ‖2F + ζ‖pP − pQ‖2 where
RP , RQ ∈ SO(3) and pP , pQ ∈ R3 are the rotations and
the translations of P,Q ∈ SE(3) respectively. Here, ‖ � ‖F
denotes the Frobenius norm and ζ ∈ R+ is a weighting factor
for the translation error. The least squares criterion becomes
as follows:

1

2

N∑
i=1

‖AiX − Y Bi‖2 =
1

2

N∑
i=1

(6− 2Tr(RTXR
T
Ai
RYRBi

) (7)

+ζ‖RAipX + pAi −RY pBi − pY ‖2).

The above Equation (7) can be established using the general
matrix trace identity Tr(ABC) = Tr(CAB) = Tr(BCA)
for matrices A, B, C. In general this problem is not a convex
nor even a quasi-convex problem, typically possessing multiple
local minima. Applying stochastic global optimization tech-
niques to this problem directly is problematic because of the
infinite volume of the search space SE(3)× SE(3) resulting
from the unbounded space of pure translations in SE(3).

We now show that the function can be easily reduced to
a quadratic function on SO(3) × SO(3), which from the
compactness of SO(3) has a search space of bounded volume.

To see why, first note that

min
X,Y ∈SE(3)

1

2

N∑
i=1

‖AiX − Y Bi‖2

= min
RX ,RY ∈SO(3)

(
min

pX ,pY ∈R3

1

2

N∑
i=1

‖AiX − Y Bi‖2
)
.

Since 1
2

∑N
i=1 ‖AiX − Y Bi‖2 is a least squares criterion,

it is a convex quadratic function with respect to pX and
pY in which closed-form solutions to the sub-minimization
minpX ,pY ∈R3

1
2

∑N
i=1 ‖AiX − Y Bi‖2 are available. Note that

the closed-form solutions p∗X(RX , RY ) and p∗Y (RX , RY ) are
functions of RX and RY . By substituting these into (7), we
define

J(RX , RY ) = min
pX ,pY ∈R3

1

2

N∑
i=1

‖AiX − Y Bi‖2

=
1

2

N∑
i=1

(
6− 2Tr(RTXR

T
Ai
RYRBi

)

+ζ‖RAip
∗
X + pAi −RY pBi − p∗Y ‖2

)
.

The entire problem now reduces to

min
RX ,RY ∈SO(3)

J(RX , RY ), (8)

which is a minimization on SO(3)×SO(3). We finally derive
the following expression for Ĵ(RX , RY ):

J(RX , RY ) =
1

2

18∑
i=1

λi (Tr(PiRX) + Tr(QiRY ))
2

+Tr(P0RX) + Tr(Q0RY ) + c, (9)

where Pi, Qi ∈ R3×3 and λi, c ∈ R are obtained by the
eigenvalue analysis of the original function (see Appendix B).
Note that the minimization (8) is not a cyclic minimization
(namely, it does not optimize over the variables in a cyclical
fashion, by optimizing over one variable while keeping the re-
maining fixed, and iterating this procedure over all variables).
We remark that the time complexity of the function evaluation
of Ĵ(RX , RY ) reduces from O(N) to O(1). This leads to gra-
dient and Hessian evaluation algorithms with complexity O(1)
as well, greatly enhancing our stochastic global optimization
algorithm by reducing the function evaluation times for a large
number of sample points.

B. Local Geometric Minimization

The objective function (9) is minimized through generaliza-
tions of the steepest descent algorithm and Newton’s method
to the search space SO(3) × SO(3). It is instructive to first
review the standard vector space versions of these algorithms.
Given a twice-differentiable objective function J(x), x ∈ Rn,
the steepest descent algorithm applies the following iteration
until a suitable convergence criterion is met:

xk+1 = xk +mkdk,
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where the search direction dk ∈ Rn is taken to be the gradient
of J(x) at xk, i.e.,

d = −∇J(xk),

and the stepsize mk is a positive scalar, typically chosen so
as to minimize J along the search direction:

mk = arg min
m∈R

J(x+mkdk). (10)

In Newton’s method, the search direction is taken to be

d = −[∇2J(xk)]−1∇J(xk),

where ∇2J(xk) ∈ Rn×n denotes the Hessian of J at xk
(recall that the gradient and Hessian correspond to the first-
and second-order terms in the Taylor series expansion of J(x):

J(x+ h) = J(x) +∇J(x)h+
1

2
hT∇2J(x)h+ . . . .

The following sections present a geometric generalization
of these standard vector space optimization methods. In a
geometric space like SO(3) × SO(3), the straight lines in
the stepsize computation (10) are now replaced by minimal
geodesics (which are difficult to compute in the case of general
Riemannian manifolds, but fairly straightforward in the case
of compact matrix Lie groups like the rotation group). Not
only exact analytic gradients and Hessians that enhance the
performance and convergence of local optimization algorithms
are derived in Section III-B1, but also “strictly descending
stepsize estimate” that enables one to use a traditional stochas-
tic optimization algorithm in our geometric search space is
presented in Section III-B2. The matrix Lie group structure of
SO(3) is then exploited to generate a geodesic curve along
the direction and update the state on the curve with strictly
descending stepsize estimate.

1) Gradient and Hessian Formulae: Because the objective
function (9) is defined on SO(3)× SO(3), which as is well-
known is not a vector space, appropriate notions of the gradient
and Hessian are needed. We first expand (RX , RY ) about
(RXk

, RYk
) via the matrix exponential as follows:

RX = RXk
(I + [ωRX

] +
1

2
[ωRX

]2 + . . .)

RY = RYk
(I + [ωRY

] +
1

2
[ωRY

]2 + . . .).

Ĵ(RX , RY ) can now expanded up to second order and the
gradient and Hessian can be obtained by differentiating it with
respect to ωRX

and ωRY
; the constant and first-order terms

then correspond to the gradient and Hessian, respectively. The
specific derivations and formulae are given in Appendix C.

2) Strictly Descending Stepsize: We first expand (RX , RY )
about (RXk

, RYk
) via the exponential mapping as follows:

RX = RXk
e[ωRX

]t

= RXk
(I +

sin ‖ωRX
‖t

‖ωRX
‖ [ωRX

] +
1−cos ‖ωRX

‖t
‖ωRX

‖2 [ωRX
]2)

RY = RYk
e[ωRY

]t

= RYk
(I +

sin ‖ωRY
‖t

‖ωRY
‖ [ωRY

] +
1−cos ‖ωRY

‖t
‖ωRY

‖2 [ωRY
]2)

where t ∈ R is the stepsize variable and (ωX , ωY ) is the given
search direction. The line search procedure is then given by

t∗ = arg min
t∈R

φ(t), (11)

where φ(t) = J(RXk
e[ωRX

]t, RYk
e[ωRY

]t) = c0 +
c1 sin tX+c2 cos tX+c3 sin tY +c4 cos tY +c5 sin tX sin tY +
c6 sin tX cos tY + c7 cos tX sin tY + c8 cos tX cos tY with
ω̂RX

= ωRX
/‖ωRX

‖, ω̂RY
= ωRY

/‖ωRY
‖, tX = ‖ωRX

‖t
and tY = ‖ωRY

‖t. The coefficients ci can be obtained
by straightforward calculation. When replacing tan tX and
tan tY by x and y, respectively so that cos tX = 1−x2

x2+1 ,
cos tY = 1−y2

y2+1 , sin tX = 2x
x2+1 , sin tY = 2y

y2+1 , the above
line search reduces to a multivariate polynomial root-finding
problem for which exact solutions are available [15].

The use of the exact stepsize formula reduces the number
of iterations required for convergence. However, there are
several associated drawbacks from both the theoretical and
computational perspective. First, the function value along the
geodesic between (RXk

, RYk
) and (RXk+1

, RYk+1
) may not

be strictly descending, and the updated point may end up in
a different region of attraction. These features can violate the
assumptions of the optimal Bayesian stopping rules which are
essential in typical stochastic global optimization algorithms
[13]. Bayesian stopping rules are derived under the assumption
that the entire path generated from the local search is contained
in one region of attraction, and the function value over each
path segment generated in each update of the local search
is monotonically decreasing. Second, the computational costs
involved in the calculation of the exact stepsize can actually
increase the total computation time. It is widely accepted in
optimization that as a matter of practice, it is far better to
spend time and resources in computing the search direction
and to calculate the stepsize in a rapid manner so that they
ensure the objective function decreases.

For these reasons, we present a stepsize estimate that is
computationally more efficient and always guarantees a strictly
descending function value. The estimate is based on the fact
that for a twice-differentiable function f(t), if f ′(0) > 0 and
|f ′′(t)| ≤ c for all t, then f ′(t) ≥ 0 in the interval − f

′(0)
c ≤

t ≤ f ′(0)
c . Conversely, if f ′(0) < 0 and |f ′′(t)| ≤ c for all t,

then f ′(t) ≤ 0 in the interval f ′(0)
c ≤ t ≤ − f

′(0)
c . From the

above equation, the stepsize estimate t∗ = − f
′(0)
c ensures that

f(t∗) < f(0).
Based on the derivations given in Appendix D, our stepsize

estimate is

t∗ = −φ
′(0)

c
(12)

where

φ′(0) =∑18
i=1 λiTr(PiRXk

+QiRYk
)

Tr(PiRXk
[ωRX

] +QiRYk
[ωRY

])

+Tr(P0RXk
[ωRX

] +Q0RYk
[ωRY

]) (13)
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and

c = |λ|max
(
‖[ωRX

]‖2 + ‖[ωRY
]‖2
)

+
√

6|λ|max
√
‖[ωRX

]2‖2 + ‖[ωRY
]2‖2

+
√

3
(
‖P0RXk

[ωRX
]2‖+ ‖Q0Yk[ωRY

]2‖
)
. (14)

(RX , RY ) is then updated by

RXk+1
= RXk

e[ωRX
]t∗ (15)

RYk+1
= RYk

e[ωRY
]t∗ . (16)

C. Determining Initial Guess (RX0
, RY0

)

From the rotational parts {(RAi , RBi)}i=1,...,N of pose data
pairs {(Ai, Bi)}i=1,...,N , one can choose two independent
equations with any k ∈ [1, N ], e.g., RAk

RX = RYRBk
and

RAi
RX = RYRBi

(i 6= k). From the above two equations,
RY can be eliminated by RTAk

RAiRX = RXR
T
Bk
RBi . Let

us denote [α1i] , log(RTAk
RAi

) and [β1i] , log(RTB1
RBi

),
so that the above reduces to RXβ1i = α1i. In the literature
[6], a closed-form solution for the minimum of

∑
‖RAiRX−

RXRBi‖2 is given, in which

RX = (UTU)−1/2UT , (17)

where U =
∑
i β1iα

T
1i. In a similar fashion, one can eliminate

RX rather than RY to obtain RAk
RTAi

RY = RYRBk
RTBi

. Let
us define β̃1i and α̃1i as [α̃1i] , log(RAk

RTAi
) and [β̃1i] ,

log(RBk
RTBi

). Applying the same closed-form solution, RY
can be obtained by

RY = (V TV )−1/2V T , (18)

where V =
∑
i β̃1iα̃

T
1i. In this way one can obtain a reasonable

set of initial values (RX0
, RY0

) for (RX , RY ).

D. Summary of Local Search Algorithm

The proposed local search algorithm is summarized in
Table I. Like all descent algorithms, our algorithm consists
of direction finding and line searching step. For the geometric
steepest descent method the search direction is given by[

ωRX

ωRY

]
= −∇J, (19)

while for Newton’s method[
ωRX

ωRY

]
= −[∇2J ]−1∇J, (20)

where ∇J and ∇2J are as given in Equations (25) and (26)
in Appendix C.

IV. STOCHASTIC GLOBAL OPTIMIZATION

In this section we propose a two-phase stochastic global
optimization method for our nonlinear objective function (8).
There are many variations of this method as described in
[13], [14] but the main features are the same:

1) Generate uniform samples on the search space S.
2) Determine whether or not to apply local search to each

sample.

TABLE I
LOCAL SEARCH ALGORITHM

Algorithm
1 Initialization

Set (RX0 , RY0 ) using Equations (17),(18).
Set k = 0.

2 Set search direction
Find ωRX

and ωRY
:

Equation (19) is used for steepest descent, while
Equation (20) is used for Newton’s method.

3 Update
Compute stepsize t∗ using Equations (12)-(14).
Find (RXk+1

, RYk+1
) using Equations (15),(16).

4 Check Local Convergence
If local convergence criterion is satisfied

break and return (RXk+1
, RYk+1

)
Else

k ← k + 1
go to Step 2

3) Apply local search to samples selected in 2.
4) Add newly discovered local minimizer x∗ to a set

of local minimizers X∗ (which is initially empty) and
assign samples to their minimizers.

5) Check the optimal Bayesian stopping criterion.
6) Stop or go back to 1.

A. Uniform Random Sampling on SO(3)

There are several ways to generate a random sequence of
rotations uniformly. The main difficulties are in the choice of
a convenient parametrization for SO(3), and sampling from
the parameter space in a way such that the resulting samples
on SO(3) are uniform [16]. The traditional way of performing
uniform random sampling on SO(3) is the subgroup algorithm
presented in [17]. The group of orthogonal matrices O(n)
contains O(n− 1) as its subgroup. By randomly sampling an
element of O(n − 1) and coset representatives for O(n − 1)
in O(n), it generates a uniform random sample of O(n).

B. Resampling for Local Search

After generating the random samples, there is a resampling
step before applying the local search algorithm in Table I to
each sample. There exist many variations of the stochastic
global optimization with their own resampling strategies. Most
of the variations focus on reducing the number of attempts
at local search. For example, clustering methods evaluate
function values of samples and the distances between samples
to avoid unnecessary multiple attempts at local search in the
same region of attraction. They assign some samples to their
minimizers without applying local search. However, though
they can save computation time, the quality of the solution is
generally not dependent on the selection of the variation. For
this reason we do not introduce any specific variation here.

C. Optimal Bayesian Stopping Rules

Two possible stopping rules are as follows:
(i) Using the posterior expectation of the number of local
minima:

w(N − 1)

N − w − 2
< w + ε. (21)
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(ii) Using the posterior expected relative size of the non-
observed regions of attraction:

w(w + 1)

N(N − 1)
< δ. (22)

Here, w is the number of local minima discovered and N is
the number of samples assigned to the minimizers. ε and δ
are the stopping criteria. Note that N is not necessarily the
same as the total number of attempts at local search. Some
samples can be assigned to a nearby minimizer by checking
the location and function value according to the resampling
strategy.

To make reliable use of (21) and (22), one should ensure
that the search space S is finite and the local search procedure
is strictly descending and completely contained in S. We have
already resolved the finite search space issue by reducing the
search space to SO(3)×SO(3). The strictly descending step-
size is also addressed in the previous section with associated
geometric local search algorithm.

D. Summary of Stochastic Global Optimization Algorithm

A stochastic global optimization algorithm using the local
search algorithm is presented in Table II.

TABLE II
STOCHASTIC GLOBAL OPTIMIZATION ALGORITHM

Stochastic Global Optimization Algorithm
1 Initialization

Set X∗ to empty.
Set N = 0.

2 Uniform Random Sampling on SO(3)
Generate n random samples of (RX , RY ) ∈ SO(3)× SO(3)

3 Local Search
Apply local search described in Table I to the samples generated

in Step 2. (Note: fewer than n local search calls are required
if the reduction schemes presented in [13], [14] are applied.)

Assign k samples to corresponding local minimizer and
insert newly discovered minimizer (R∗

X , R
∗
Y ) into X∗.

(k and n depend on choice of reduction scheme.)
4 Check Convergence

N ← N + k
Check stopping rules (21) and (22).

If convergence criterion is satisfied
break and return best minimizer (R∗

X , R
∗
Y ) in X∗

Else
go to Step 2

V. EXPERIMENTS

In this section, we compare the performances of our geomet-
ric algorithms against the state-of-the-art local unit quaternion-
based nonlinear optimization [4] using synthetic and real data.

A. Synthetic Data

We generate synthetic data to simulate an aerial vehicle with
infrared markers and onboard camera in Figure 2(b). Using
these synthetic data, we present experimental results for three
different optimization methods: (i) stochastic global geometric
algorithm, (ii) local geometric algorithm, and (iii) local unit
quaternion-based nonlinear optimization.

For the local geometric approach, the initial guess
(RX0

, RY0
) ∈ SO(3) × SO(3) can be obtained by using the
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Fig. 3. Synthetically-generated continuous trajectories of pose data (Ai, Bi)
to simulate a real aerial vehicle with infrared markers and onboard camera in
Figure 2(b).

Equations (17) and (18). In these experiments, we set ζ in
Equation (7) to 1.

We randomly set a pair of ground truth rotations
(RX,true, RY,true) ∈ SO(3) × SO(3) by using the uniform
random sampling method described in the previous section
IV-A. Two true translations (pX,true, pY,true) ∈ R3 × R3

are randomly set. Taking into account the relative scale
between the aerial vehicle and the workspace, we normal-
ize (pX,true, pY,true) differently as ‖pX,true‖ = 0.1 and
‖pY,true‖ = 1. With the above pair of rotations and trans-
lations, we construct true values of (Xtrue, Ytrue) ∈ SE(3)×
SE(3). We now generate a set of N random pose mea-
surements, {Ai}i=1,...N ∈ SE(3), where the number of
measurements N ∈ [12, 40] is also randomly generated. To
ensure realistic trajectories for the aerial vehicle within the
limited workspace, the translation component of each Ai is
confined to lie on a sphere with varying radius. The other set
of pose measurements {Bi}i=1,...N are uniquely determined
as Bi = Y TtrueAiXtrue.

Noisy data sets are then generated by multiplying the
rotations (RAi

, RBi
) of the trajectories by random noisy

rotation matrices (e[vA], e[vB ]) as follows: RAi
← RAi

e[vA]

and RBi
← RBi

e[vB ] where vA, vB ∈ R3 ∼ N (0, (γπ)2I) are
Gaussian noises and γ ∈ R is the noise level. The translation
(pAi , pBi) are also corrupted by pAi,x ← pAi,x+pAi,xwA and
pBi,x ← pBi,x + pAi,xwB where wA, wB ∈ R3 ∼ N (0, γ2I).
The y and z components of translation vectors pAi

and pBi

are corrupted in the same manner with the x component. For
each noise level, 1,000 trials of independent experiments are
performed to regress the random effect in a single experiment.
We perform this experiment 100 times with different true
values (Xtrue, Ytrue) ∈ SE(3) × SE(3) and measurements
{Ai, Bi}i=1,...N ∈ SE(3)× SE(3) as shown in Figure 3. As
a result, we ultimately perform 100 × 1,000 experiments with
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Fig. 4. Geodesic angle errors with increasing noise level.
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Fig. 5. Translation errors with increasing noise level.
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100 sets of independent pose trajectories and 1,000 different
noise distributions at each noise level.

We evaluate our stochastic global geometric algorithm and
some local algorithms by comparing the accuracy of the
estimates (Xest, Yest) with the synthetically generated ground
truth values (Xtrue, Ytrue). Figures 4 and 5 show the average
rotation errors (in terms of geodesic angle) and translation
errors, respectively, for noise levels varying within the range
γ ∈ [0, 0.2]. With increasing noise levels γ, the stochastic
global geometric algorithm shows superior performance over
both the local quaternion-based method and the local geo-
metric method. As the noise level increases, the error of the
local geometric algorithm deviates from that of the stochastic
global geometric algorithm. This can be attributed to the local
solution tending to converge to another local minimizer with
increasing noise. The ratio of deviations from the stochastic
global solution in the local geometric method is shown in
Figure 6. Note that the ratio of deviations from the stochastic
global solution increases with noise, since large noise levels
increase the number of local minima that attract the solution
to the problem at each iteration.

Figures 7 and 8 show error distributions in the rotations
and translations over 100 × 1,000 experimental trials, with
the noise level γ set to 0.1. The error distribution for the
stochastic global geometric method tends to be much more
sharply concentrated at small error values when compared
to the results obtained for the local geometric and local
quaternion-based methods. For problems in which large noise
levels create numerous local minima, our stochastic global
optimization method outperforms local optimization methods
in terms of accuracy and robustness.

Figure 9 shows average computation times of the algorithms
with respect to the number of measurement used in the
calibration. 100 experimental trials are averaged for each
number of measurements, with the noise level γ set to 0.1.
The computation times of our global and local algorithms are
invariant to the number of measurements since the time com-
plexity of evaluating the objective function has been reduced
to O(1) as stated in Section III-A. The average computation
times of our global and local algorithms are 0.16 sec. and
12.99 sec., respectively. On the other hand, the computation
time of the quaternion-based method depends on the number
of measurements used in the calibration. It increases from 1.59
sec. to 3.81 sec. as the number of measurements increases from
12 to 40.

B. Real Data

In this section, we present experimental results of our
calibration algorithm using real data obtained from actual
multiple networked infrared (IR) cameras (OptiTrackTM) and
a color camera on a commercial UAV (Parrot AR.DroneTM

2.0) as shown in Figure 10(a).
We attach an additional wired color camera (LogitechTM

webcam C905) onto the AR.Drone to support time synchro-
nization with the OptiTrack IR camera system via a host
computer. Whenever the webcam captures planar checkerboard
images on the ground, the pose data Ai of the reflective IR

(a) Our experimental setup: UAV
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(b) Trajectory of a camera on
the UAV.

Fig. 10. Experiments using a UAV equipped with IR markers and a camera

markers (illustrated in Figure 2(b)) are recorded. The webcam
pose data Bi with respect to the coordinate frame of the
checkerboard are easily computed by using a standard camera
calibration toolbox. Figure 10(b) shows the trajectory of the
webcam on a UAV for this experiment.

In general, when dealing with real data, the ground truth
pair (X,Y ) is unknown. Therefore, we employ a two-step
verification procedure for our experiments, involving an esti-
mation step and a validation step [7]. In the estimation step,
we randomly select N0 measurement pairs from a total of
Nt measurement pairs (Ai, Bi), (i = 1 . . . Nt). In each trial
of random selection of measurement pairs, we compute the
optimal estimate (Xest, Yest) using only a randomly selected
number N0 of measurement pairs. For the validation step, we
compute the estimation error by using the remaining Nr =
(Nt − N0) data pairs excluding the previous N0 randomly
selected data pairs. We perform this two-step verification step
Ne times.

The geodesic rotation error Egeod and the translation error
Et for each two-step verification trial are defined as

Egeod =
1

Nr

Nr∑
j=1

‖ log(RAjRX(RYRBj )−1)‖

Et =
1

Nr

Nr∑
j=1

‖RAj
pX + pAj

−RY pBj
− pY ‖.
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Fig. 11. Histogram of geodesic rotation error, Egeod, with 515 number of
trials.
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Fig. 12. Histogram of translation error, Et, with 515 number of trials.

The histograms in Figures 11 and 12 show the rotation and
translation estimation errors for several methods. For these
experiments, N0 = 7, Nt = 28 and Ne = 515. Note that
our stochastic global geometric method with random initial
guess outperforms the existing quaternion-based nonlinear
optimization method with a closed-form initial guess as shown
in Table III.

TABLE III
AVERAGE ESTIMATION ERRORS, 1

Ne

∑Ne
k=1 Egeod (IN RADIAN) AND

1
Ne

∑Ne
k=1 Et (IN CENTIMETER); N0 = 7, Nt = 28, Ne = 515

stochastic global geometric local geometric local quaternion
1

Ne

∑Ne
k=1 Egeod 0.1108 0.1115 0.1167

1
Ne

∑Ne
k=1 Et 0.7725 0.7902 0.8050

VI. CONCLUSION

This paper has presented a fast and numerically robust
local optimization algorithm for the two-frame sensor calibra-
tion problem. Using coordinate-invariant differential geometric
methods that take into account the matrix Lie group structure
of the rigid-body transformations, the proposed local descent
method makes use of analytic gradients and Hessians, and a
strictly descending fast step-size estimate to achieve signif-
icant performance improvements. As a second contribution,
a two-phase stochastic geometric optimization algorithm for
finding a stochastic global minimizer is derived based on our
earlier local optimizer. In both cases the calibration problem
is formulated as a minimization of the objective function∑
i ‖AiX−Y Bi‖2 on the space SE(3)×SE(3). After deriv-

ing necessary and sufficient conditions for the existence and
uniqueness of exact solutions (i.e., those cases where J = 0 is
achievable), we perform both synthetic and real experiments
that verify the advantages of our stochastic global optimization
method over existing local quaternion-based methods.

APPENDIX A
EXISTENCE AND UNIQUESS OF SOLUTIONS TO AX = Y B

ON SE(3)

A. Proof of Proposition 1: When two pairs of measurements
{(RA1

, RB1
), (RA2

, RB2
)} on SO(3)× SO(3) are given

Proof: First, note that the general form of the solution
to RARX = RYRB is given by RX = RTAΘ, RY = ΘRTB ,

where Θ = RARX ∈ SO(3) is arbitrary. Now, if (X,Y ) is a
solution to (2), then there exists some Θ1,Θ2 ∈ SO(3) such
that RX = RTA1

Θ1 = RTA2
Θ2 and RY = Θ1R

T
B1

= Θ2R
T
B2

.
Eliminating Θ1,

Θ2R
T
B2
RB1ΘT

2 = RA1R
T
A2
.

Taking the logarithm of both sides, Θ2[β]ΘT
2 = [α], or

equivalently, Θ2β = α, where [α] = log(RA1R
T
A2

) and
β = log(RTB2

RB1). As detailed in [6], a solution exists only
if ‖α‖ = ‖β‖, and is given by the one-parameter family

Θ2 = e[α]tΘp = Θpe
[β]t,

where t ∈ [0, 2π] and Θp is any particular solution to Θβ = α.
Substituting into RX = RTA2

Θ2 and RY = Θ2R
T
B2

leads to
the main result.

B. Proof of Proposition 2: When three pairs of measurements
(RAi , RBi), i = 1, 2, 3 on SO(3)× SO(3) are given

Proof: We first prove the forward direction. Setting
Θi = RAi

RX = RYRBi
, i = 1, 2, 3, we have four equations

associated with RX = RTAi
Θi and RY = ΘiR

T
Bi

:

RTA1
Θ1 = RTA2

Θ2 = RTA3
Θ3

Θ1R
T
B1

= Θ2R
T
B2

= Θ3R
T
B3
.

After some manipulation, Θ1R
T
B1
RBjΘT

1 = RAjR
T
A1
, j =

2, 3. Taking the logarithm of both sides,

Θ1βj1 = αj1, j = 2, 3. (23)

Adding the following independent equation Θ1(β21 × β31) =
α21 × α31 leads to Θ1Ψ = Φ. Under our assumptions about
Φ and Ψ the solution Θ1 is given by Θ1 = ΦΨ−1. It is
straightforwardly verified that det Θ1 = 1 and ΘT

1 Θ1 = I ,
and therefore a rotation matrix as required.

We now prove the reverse direction. Suppose Φ is singular,
in which case det Φ = ‖α21 × α31‖2 = 0, or equivalently,
α21 = cα31 for some constant c ∈ R. For a particular solution
Θ1 to Equation (23), e[α31]Θ1 is also a solution and it follows
that the solution is not unique. Likewise, in a similar way it
can be shown that Ψ must be nonsingular in order for the
solution to be unique. Finally, Suppose ΦTΦ 6= ΨTΨ. For
nonsingular Ψ, no solution exists since Θ1 = ΦΨ−1 does not
satisfy ΘT

1 Θ1 = I . The case of singular Ψ has already been
proven to have multiple solutions.

C. Proof of Proposition 3: When two pairs of measurements
{(A1, B1), (A2, B2)} on SE(3)× SE(3) are given

Proof: It is already shown that there exists a one-
parameter family of solutions of rotations (RX , RY ) if ‖α‖ =
‖β‖ in Proposition 1. For any rotation pair solution (RX , RY ),
(pX , pY ) satisfies the following equations:[

RA1
−I

] [ pX
pY

]
= RY b1 − a1[

RA2 −I
] [ pX

pY

]
= RY b2 − a2.

Since there are six unknowns with 6 linear equations, there ex-
ists a unique solution for (pX , pY ) if and only if rank(A) = 6.



0278-0046 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2015.2505690, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 11

If rank(A) is less than six, we have additionally 6−rank(A)
parameters more for the solution of the translation (pX , pY ).
There already exists a one-parameter family of solutions for
the rotation (RX , RY ), so that (6) has a (7 − rank(A))-
parameter family of solutions (X,Y ).

D. Proof of Proposition 4: When three pairs of measurements
(Ai, Bi) i = 1, 2, 3 on SE(3)× SE(3) are given

Proof: Proposition 2 shows that there exists a unique solu-
tion (RX , RY ) if and only if both Φ and Ψ are nonsingular and
ΦTΦ = ΨTΨ, with the solution RY given by RY = ΦΨ−1B1.
For the unique rotation solution (RX , RY ), (pX , pY ) must
satisfy the following equations:[
RAi −I

] [ pX
pY

]
= ΦΨ−1RBi

pBi
− pAi

, i = 1, 2, 3

or equivalently A
[
pX
pY

]
= η. This is a typical over-

constrained linear equation with six unknowns. As is well-
known, this linear equation has a unique solution if and only
if A has full column rank and η is in the range space of A.

APPENDIX B
DERIVATION OF REDUCED OBJECTIVE FUNCTION

Given X =

[
RX pX
0 1

]
and Y =

[
RY pY
0 1

]
, define

η1 =

[
rX
rY

]
, η2 =

[
pX
pY

]
, η =

[
η1
η2

]
where rX = vec(RX), rY = vec(RY ). Then (7) can be
expressed as a quadratic function of η:

L(η) =
1

2
ηT
[
H11 H12

HT
12 H22

]
η +

[
f1
f2

]T
η + r

where H11 ∈ R18×18, H12 ∈ R18×6 ,H22 ∈ R6×6, f1 ∈
R18, f2 ∈ R6 and r ∈ R are obtained from (Ai, Bi) by a
straightforward calculation. Since J(X,Y ) is a least squares
criterion, this is a convex quadratic minimization with respect
to η2 for a given η1. The minimizer η∗2 and the minimum are
obtained as follows:

η∗2 = −H−122 (HT
12η1 + f2)

min
η2∈R6

L(η) =
1

2
ηT1 H̃η1 + f̃T η1 + c (24)

where H̃ = H11 − H12H
−1
22 H

T
12, f̃ = f1 − H12H

−1
22 f2, c =

− 1
2f

T
2 H

−1
22 f2 + r. Here H̃ is a 18 × 18 symmetric matrix;

eigenvalue decomposition of H̃ results in an orthogonal eigen-
vector matrix X and real-valued eigenvalues λ1, λ2, . . . , λ18:

H̃ = XΛXT

Λ = diag(λ1, λ2, . . . , λ18)

Now we define 3 × 3 matrices (Pi, Qi), i = 0, 1, 2, . . . , 18
which satisfy

X =

[
vec(PT1 ) . . . vec(PT18)
vec(QT1 ) . . . vec(QT18)

]
f̃ =

[
vec(PT0 )
vec(QT0 )

]
.

Since Tr(AB) = vec(AT )vec(B) for any matrices A,B ∈
R3×3, (24) is equivalent to

J(RX , RY ) =
1

2

18∑
i=1

λi (Tr(PiRX) + Tr(QiRY ))
2

+Tr(P0RX) + Tr(Q0RY ) + c

where J(RX , RY ) = minη2∈R6 L(η).

APPENDIX C
DERIVATIONS OF GRADIENT AND HESSIAN

Ĵ(RX , RY ) can be expanded up to second order as follows:

J(RX , RY ) ≈ J(RXk
, RYk

)− 1

2

18∑
i=1

λi
(
(Tr([αi][ωRX

])2

+ Tr([βi][ωRY
])2 + 2γiTr([αi]k[ωRX

])

+ γiTr(Mi[ωRX
]2) + 2γiTr([βi][ωRY

])

+γiTr(Ni[ωRY
]2) +2Tr([αi][ωRX

])Tr([βi][ωRY
]))

− Tr([α0][ωRX
])− Tr([β0][ωRY

])

− 1

2
Tr(M0[ωRX

]2)− 1

2
Tr(N0[ωRY

]2)

where [αi] = 1
2 (RTXk

PTi − PiRXk
), [βi] = 1

2 (RTYk
QTi −

QiRYk
), Mi = 1

2 (RTXk
PTi + PiRXk

), Ni = 1
2 (RTYk

QTi +
QiRYk

), γi = Tr(Mi +Ni).
Differentiating the above expansion with respect to ωRX

and ωRY
, the constant and first-order terms then correspond

to the gradient and Hessian, respectively. In this regard the
following proposition, which follows from a straightforward
calculation, is useful.

Proposition 5. Given A,B ∈ R3×3 and [w] ∈ so(3),[
∂

∂ω
Tr(A[ω])

]
= AT −A[

∂

∂ω
Tr(B[ω]2)

]
= −(B +BT )[ω]− [ω](B +BT ).

Using the above proposition the gradient and Hessian are
then given by

∇J =

[
sX
sY

]
(25)

∇2J = −
[
A B
BT C

]
(26)

where sX = 2
∑18
i=1 λiγiαi + 2α0, sY = 2

∑18
i=1 λiγiβi +

2β0, A =
∑18
i=1 λi(4αiα

T
i + γi(Mi − Tr(Mi)I) + M0 −

Tr(M0)I, B = 4
∑18
i=1 λiαiβ

T
i and C =

∑18
i=1 λi(4βiβ

T
i +

γi(Ni − Tr(Ni)I)) +N0 − Tr(N0)I.

APPENDIX D
DERIVATION OF STRICTLY DESCENDING STEPSIZE

ESTIMATE

In Section III it is stated that once the direction (ωRX
, ωRY

)
is determined, the strictly descending stepsize is given by

t∗ = −φ
′(0)

c
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where φ′(t) = J(RXk
e[ωRX

]t, RYk
e[ωRY

]t) and c is an upper
bound of |φ′′(t)|. φ′(t) and φ′′(t) as follows:

φ′(t) =
18∑
i=1

λiTr(PiRXk
e[ωRX

]t +QiRYk
e[ωRY

]t)

Tr(PiRXk
[ωRX

]e[ωRX
]t +QiRYk

[ωRY
]e[ωRY

]t)

+ Tr(P0RXk
[ωRX

]e[ωRX
]t +Q0RYk

[ωRY
]e[ωRY

]t)

φ′′(t) =∑18
i=1 λi

((
Tr(PiRXk

[ωRX
]e[ωRX

]t +QiRYk
[ωRY

]e[ωRY
]t)
)2

+
18∑
i=1

Tr(PiRXk
e[ωRX

]t +QiRYk
e[ωRY

]t)

Tr(PiRXk
[ωRX

]2e[ωRX
]t +QiRYk

[ωRY
]2e[ωRY

]t)
)

+Tr(P0RXk
[ωRX

]2e[ωRX
]t +Q0RYk

[ωRY
]2e[ωRY

]t). (27)

We remark that the Pi, Qi are from the eigenvectors of H̃ in
(24) and it follows that, using the maximum eigenvalue of H̃
(in terms of absolute value), an upper bound for the first sum
in (27) is |λ|max

(
‖Xk[ωRX

]e[ωRX
]t‖2 + ‖QiRYk

e[ωRY
]t‖2
)
.

An upper bound for the second sum in (24) can be found
similarly. Since a linear transformation by a rotation matrix
R ∈ SO(3) is an isometry (i.e., ‖RU‖ = ‖UR‖ = ‖U‖ for
any U ∈ R3×3), it follows that the strictly descending stepsize
is

t∗ = −φ
′(0)

c

where

φ′(0) =∑18
i=1 λiTr(PiRXk

+QiRYk
)Tr(PiRXk

[ωRX
] +QiRYk

[ωRY
])

+Tr(P0RXk
[ωRX

] +Q0RYk
[ωRY

])

and

c = |λ|max
(
‖[ωRX

]‖2 + ‖[ωRY
]‖2
)

+
√

6|λ|max
√
‖[ωRX

]2‖2 + ‖[ωRY
]2‖2

+
√

3
(
‖P0RXk

[ωRX
]2‖+ ‖Q0Yk[ωRY

]2‖
)
.
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